4 Locais de Estudos e Resultados de Ensaios Utilizados

Para a retroanálise e a simulação de fluxo saturado - não saturado foram utilizados dados de ensaios de campo de diversos locais. A seguir os locais são descritos e os dados recolhidos de cada um deles apresentados.

4.1 Ensaios no Campo Experimental II da PUC-Rio

O campo experimental II da PUC-Rio (CEII) situa-se no interior do campus da Universidade, na encosta localizada ao lado da estrada Lagoa-Barra. Nesse local têm sido realizados diversos trabalhos (Soares, 2005; Beneveli, 2002; Diniz, 1998 entre outros). O perfil de solo é composto por um solo maduro colúvionar argilo-arenoso (Soares, 2005). A Figura 4.1 apresenta o esquema do local.

Figura 4.1 - Localização do Campo Experimental II (Soares, 2005).

A tonalidade do solo é vermelha amarelada, possui um aspecto bastante homogêneo e constitui-se basicamente por argilominerais, quartzo e óxidos de ferro e alumínio, como produtos do intemperismo dos minerais primários do biotita gnaisse (Soares, 2005). Pedológicamente, o solo pode ser clasificado como horizonte B latossolico, ou seja um solo bastante lixiviado (De Mello, 1998).

Na figura 4.2 é apresentada a descrição morfológica de parte do perfil, obtida por Daylac (1994) a partir da inspeção de um poço aberto no Campo Experimental II da PUC-Rio de aproximadamente 13,5m de profundidade, inspecionado até 12,3m.

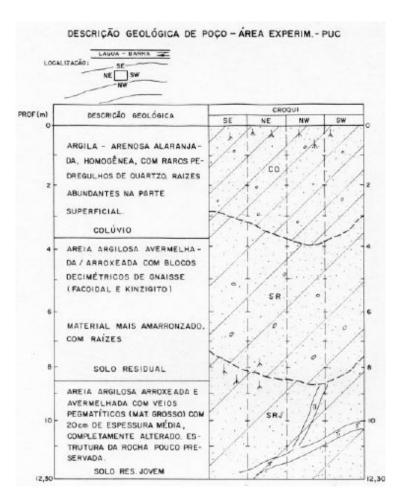


Figura 4.2 - Descrição Morfológica do Perfil (Daylac, 1994).

Do trabalho de Soares (2005) apresenta-se a tabela 4.1 que resume a análise granulométrica para o solo.

Pedregulho	Areia grossa	Areia média	Areia fina	Silte	Argila
(%)	(%)	(%)	(%)	(%)	(%)
0,9	9,2	16,3	14,6	5,5	53,5

Tabela 4.1 - Análise granulométrica do solo do C.E.II (Soares, 2005).

A figura 4.3 exibe alguns resultados da curva característica obtidas do Campo Experimental II utilizando o método do papel filtro:

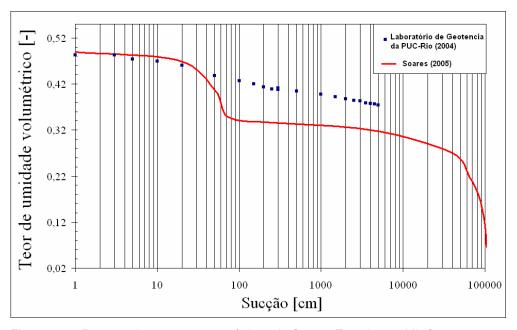


Figura 4.3 - Resumo da curvas características do Campo Experimental II (Soares , 2005 e DEC/PUC-Rio , 2004).

Da figura 4.3 pode - se observar que a curva característica obtida por Soares (2005) apresenta dois pontos de inflexão. Essa é uma característica que sugere a existência de uma distribuição bimodal dos poros, a qual foi comprovada através da análise de microscopia eletrônica por Soares (2005). A distribuição bimodal dos poros é caracterizada pelos macroporos formados pelos vazios entre os micro agregados e pelos microporos formados no interior das agregações (Soares, 2005).

Para a estimativa das características hidráulicas do solo, realizada nesta dissertação desconsiderou-se a segunda inflexão da curva característica mostrada

por Soares (2005), já que as leituras feitas com o tensiômetro tem um limite de 90 kPa.

Os resultado dos ensaios de infiltração monitorados (E.I.M) são apresentadas na figura 4.4:

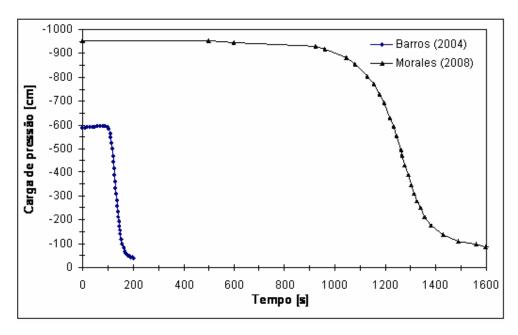


Figura 4.4 - Resultados do E.I.M. no solo do Campo Experimental II da PUC-Rio.

4.2 Ensaio em Perfil de Solo de Duque de Caxias

Está localizado na Rodovia Washington Luís, em direção à Petrópolis, no município de Duque de Caxias no estado do Rio de Janeiro (BR 040 – km 111). Foram realizados ensaios de campo e de laboratório num solo residual jovem de gnaisse dessa região. A figura 4.5 mostra o local dos ensaios.

Figura 4.5 - Solo de Duque de Caxias (Nunes, 2002).

O local apresenta feições ricas em minerais máficos (biotita) e félsicos (feldspatos), conferindo ao referido solo a respectiva alternância de camadas com porosidade e permeabilidade possivelmente diferenciadas. Sendo uma mais arenosa e a outra mais siltosa, como está mostrado na figura 4.5 (Demuelenaere, 2004).

Nunes (2002) realizou ensaios de caracterização do solo para este local, classificando os solos existentes em duas frações: o primeiro um silte-arenoso, com grande percentagem de finos e o segundo solo encontrado classificado como areno-siltoso, sendo 72% da amostra constituída por areia. A tabela 4.2 apresenta o resumo da análise granulométrica dos solos.

Tabela 4.2 - Análise granulométrica do solo de Duque de Caxias (Nunes, 2002).

Material	Pedregulho	Areia grossa	Areia media	Areia fina	Silte	Argila
	(%)	(%)	(%)	(%)	(%)	(%)
Siltosa	1	9	11	10	64	5
Arenosa	2	15	32	25	23	3

A figura 4.6 expõe um resumo das curvas características determinadas utilizando a formulação de van Genutchen - Mualem em estudos anteriores para o solo de Duque de Caxias:

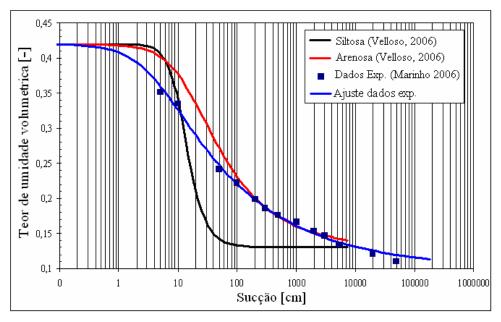


Figura 4.6 - Curvas características do solo de Duque de Caxias.

Os resultados de E.I.M. foram obtidos por Barros (2004) são apresentadas na figura 4.7.

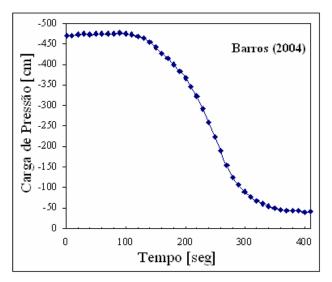


Figura 4.7 - Resultados do E.I.M. para o solo de Duque de Caxias (Barros, 2004).

Do ensaio de laboratório proposto por Marinho (2006), descrito no item 4.2.2, realizado para o perfil em estudo, tem-se os resultados mostrados na figura 4.8.

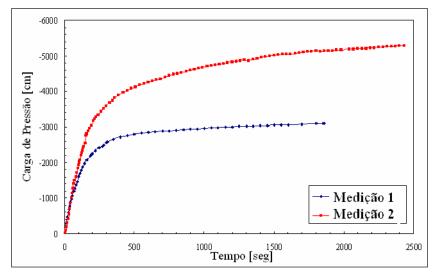


Figura 4.8 - Resultados do ensaio de laboratório proposto por Marinho (2006).

4.3 Ensaios em solos da Vista Chinesa

O local denominado vista Chinesa situa-se dentro do atual Parque Nacional da Tijuca, na vertente marítima da Serra da Carioca, que juntamente com a Serra da Tijuca, compõem o maciço da Tijuca, localizado a sudoeste do município do Rio de Janeiro (Soares, 1999). A figura 4.9 mostra a localização da Vista Chinesa:

Figura 4.9 - Mapa de localização da Vista Chinesa (Soares, 1999).

Rocha (1993) e Delgado (1993) agruparam os materiais estudados em seis unidades geológico-geotécnicas: coluvionar amarelo, coluvionar vermelho, residual vermelho, residual típico, rocha alterada e rocha sã a levemente alterada.

Em Soares (1999) encontra-se um resumo das análises granulométricas realizadas por Delgado (1993) e Rocha (1993), observando que o coluvionar amarelo é constituído, em média por 50% de fração areia e 40% de fração argila, possuindo uma pequena percentagem de pedregulho e silte. O coluvionar vermelho têm composição similar à do coluvionar amarelo, sendo predominantes a fração areia, com 46,5 %, e a fração argila, com 41%. No solo residual vermelho predominou o material arenoso (60%), com 24% da fração argila e baixas porcentagens de silte e pedregulho. Já no solo residual observou-se uma grande

percentagem da fração areia (73%). A tabela 4.3 apresenta a análise granulométrica englobando a faixa de variação granulometrica.

Tabela 4.3 - Análise	granulométrica	dos solos da \	Vista Chinesa	(Soares, 19	99).

Materiais	Pedregulho	Areia grossa	Areia media	Areia fina	Silte	Argila
	(%)	(%)	(%)	(%)	(%)	(%)
Coluvionar	1,19	13,74	19,41	17,06	4,74	43,86
Amarelo	3,77	18,84	15,54	16,10	4,54	41,21
Coluvionar	6,8	16,52	12,77	15,09	6,00	42,82
Vermelho	5,96	19,73	13,72	11,35	5,57	43,65
Residual	8,02	26,74	17,41	22,93	9,13	15,77
Vermelho	10,22	27,07	8,27	17,60	3,78	33,06
Residual	1,66	28,51	24,60	24,83	13,02	7,32
Típico	15,10	23,91	17,37	24,30	11,27	8,05

A determinação das curvas características dos materiais foi feita por Delgado (1993), através de ensaios de placa de pressão. Utilizando estes dados determinou-se a curva característica e os parâmetros do modelo de van Genuchten. Os solos coluvionar amarelo e vermelho foram denominados de coluvionar e os solos residual vermelho e residual típico, denominados de residual (Soares, 1999). Esses dados são apresentados na figura 4.10, e na tabela 4.4 encontram-se os valores dos parâmetros para o modelo de van Genuchten determinados.

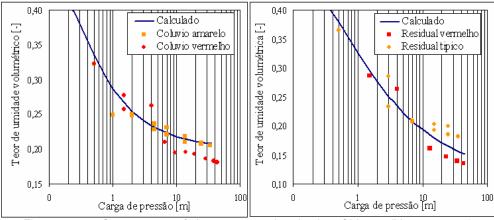


Figura 4.10 - Curva característica para os solos da vista Chinesa (Vargas, 2008).

Tabela 4.4 - Parâmetros do modelo de van Genuchten dos solos da Vista Chinesa (Vargas, 2008).

Material	$\theta_{\rm r}$	$\theta_{\rm s}$	α [m ⁻¹]	n
Coluvionar	0,2	0,53	7	1,68
Residual	0,1	0,49	3,5	1,4

Rocha (1993) determinou a condutividade hidráulica saturada dos materiais em laboratório, a partir de amostras cilíndricas e indeformadas, e em ensaios "in situ". As tabelas 4.5 e 4.6 mostram os valores obtidos dos ensaios.

Tabela 4.5 - Resultado dos ensaios de condutividade hidráulica in-situ para a Vista Chinesa (Soares, 1999)

Material	Intervalo [m]	Tipo	k _s [cm/s]
Coluvionar amarelo	0,52 - 0,92	carga constante	4,5 x 10 ⁻⁴
Coluvionar amarelo	0,52 - 0,93	carga variável	4,3 x 10 ⁻⁴
Coluvionar amarelo	0,92 - 1,32	carga constante	$1,0 \times 10^{-3}$
Coluvionar amarelo	0,92 - 1,33	carga variável	$1,5 \times 10^{-3}$
Coluvionar vermelho	0,82 - 1,07	carga constante	$1,5 \times 10^{-3}$
Coluvionar vermelho	0,82 - 1,08	carga variável	$2,3 \times 10^{-3}$
Residual vermelho	0,52 - 0,75	carga constante	4,1 x 10 ⁻⁴
Residual vermelho	0,52 - 0,76	carga variável	4,7 x 10 ⁻⁴

Tabela 4.6 - Resultados dos ensaios em laboratório da condutividade hidráulica para a Vista Chinesa (Soares, 1999).

Ensaios em laboratório						
Condutividade hidráulica [cm/s]						
Tensão efetiva [kPa]						
Material	10	100	250	400		
Coluvionar amarelo	1,0 x 10 ⁻⁴	8,3 x 10 ⁻⁵	1,2 x 10 ⁻⁵	6,0 x 10 ⁻⁶		
Coluvionar vermelho	6,3 x 10 ⁻⁴	2,0 x 10 ⁻⁴	1,7 x 10 ⁻⁴	2,1 x 10 ⁻⁵		
Residual vermelho	3,7 x 10 ⁻⁴	1,0 x 10 ⁻⁴	4,1 x 10 ⁻⁴	3,3 x 10 ⁻⁵		
Residual típico	6,3 x 10 ⁻⁴	3,0 x 10 ⁻⁴	2,2 x 10 ⁻⁴	9,2 x 10 ⁻⁵		

Em 1988, no maciço da Tijuca, em um trecho de apenas 9,5 km, ao longo das estradas da Vista Chinesa, foram registrados cerca de quarenta acidentes, entre os quais, o maior escorregamento ocorrido na cidade àquela época. Este

grande escorregamento apresentou um volume total de 12.800 m³ de material rompido em 200 metros de comprimento (Soares, 1999).

Soares (1999) realizou a análise dos dados pluviométricos deste evento, mais precisamente no mês de fevereiro, no qual aconteceu o acidente. A tabela 4.7 apresenta os valores de precipitação, evapotranspiração e interceptação da água da chuva, para o mês da análise, e a figura 4.11 a precipitação acumulada:

Tabela 4.7 - Valores de precipitação, evapotranspiração e interceptação da água da chuva da Vista Chinesa fevereiro de 1988 (Vargas, 2008).

dia	Prec	ETp	Int
uia	[mm/d]	[mm/d]	[mm/d]
1	3	3,9	1,8
2	18	4,4	7,2
3	90	4,6	3,6
4	10	3,8	6,0
5	70	4,0	5,6
6	50	4,0	7,5
2 3 4 5 6 7 8	7	4,6	4,2
8	10	4,3	6,0
9	5	4,6	3,0
10	35	4,6	8,8
11	40	4,8	8,0
12	75	4,3	5,3
13	40	4,4	8,0
14	10	4,9	6,0
15	5	5,0	3,0
16	0	4,9	0,0
17	5 0 5 0	4,8	3,0
18	0	4,6	0,0
19	75	5,2	5,3
20	170	4,3	1,7
21	90	4,2	3,6
22	90	4,1	3,6

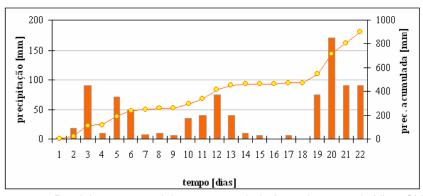


Figura 4.11 - Precipitação e precipitação acumulada fevereiro 1988 da Vista Chinesa (Vargas 2008).

4.4 Ensaios em Solos do Túnel Rebouças

O Túnel Rebouças localiza-se na cidade do Rio de Janeiro, atravessa o maciço carioca em dois trechos: do Rio Comprido ao Cosme Velho, com 760 metros; e do Cosme Velho à Lagoa com 2.040 metros. Trata-se de uma encosta de relevo forte ondulado, com inclinação natural variando entre 350 e 40°, expondo vegetação rasteira, espécies arbóreas e lixo.

Na tarde do 23 de Outubro de 2007, um deslizamento de terras fechou a entrada da galeria no sentido Laranjeiras-Lagoa, causando sérios transtornos ao trânsito na cidade.

O DEC/PUC-Rio vêm realizando diversos ensaios para determinar as causas do deslizamento acontecido, para isso realizou-se primeiramente ensaios de caracterização dos solos. Destes encontrou-se duas frações predominantes as quais denominaremos material 1 e material 2 as quais representam as camada superior e inferior da encosta. A tabela 4.8 resume a análise granulométrica realizada no laboratório de geotécnica do DEC/PUC-Rio:

Tabela 4.8 - Resumo da análise granulométrica dos solos no túnel Rebouças.

Material	Pedregulho	Areia grossa	Areia média	Areia fina	Silte	Argila
	(%)	(%)	(%)	(%)	(%)	(%)
Material 2	0,2	30,6	24,1	25,3	12,7	3,4

Foram realizados ensaios para determinar a condutividade hidráulica saturada com o permeâmetro de Guelph, e também se realizou o ensaio de infiltração monitorado (ver item 3.4.1.1). Como parte desta dissertação foram determinados os valores de condutividade hidráulica saturada de campo a partir dos resultados do ensaio com o permeâmetro de Guelph.

A tabela 4.9 resume os resultados dos ensaios de permeabilidade e a figura 4.12 apresenta os resultados dos ensaios de infiltração monitorados.

Tabela 4.9 - Resultado dos ensaios utilizado o permeâmetro de Guelph no solo do túnel Rebouças

Material	k _{fs} [cm/s]
Matérial 1	3,82x10 ⁻⁰⁵
Material 2	4,35x10 ⁻⁰⁴
Material 2	$2,03x10^{-03}$

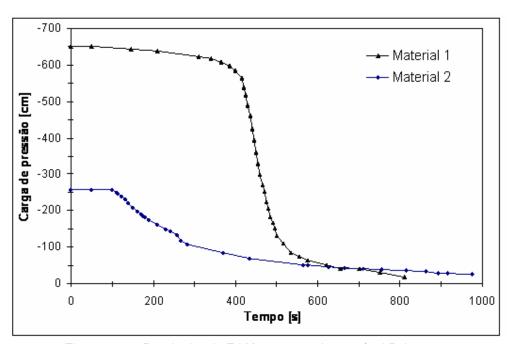


Figura 4.12 - Resultados do E.I.M. para os solos no túnel Rebouças.

As figuras 4.13 e 4.14 apresentam a precipitação média mensal medidas nos meses anteriores ao evento de deslizamento nas estações pluviométricas da Tijuca e Laranjeiras, respectivamente. Estes dados foram fornecidos pela GEO-RIO.

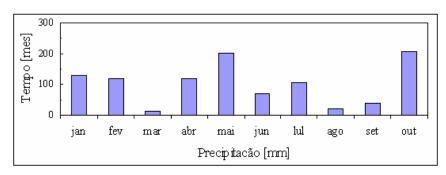


Figura 4.13 - Precipitação média mensal durante o 2007, Estação Tijuca.

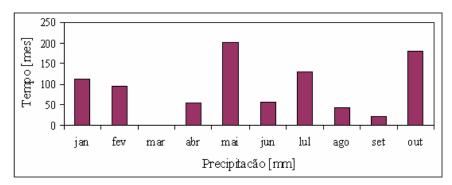


Figura 4.14 - Precipitação média mensal durante o 2007, Estação Laranjeiras.

4.4 Pilha de Estéril nº 5 da Mina do Andrade – Bela Vista de Minas

A pilha de estéril PDE-05 está implantada na mina do Andrade, no município de Bela Vista de Minas (Minas Gerais). A pilha PDE-05 situa-se em uma região a noroeste da lavra do Pico, porção da margem esquerda do vale do córrego da Derrubada e a jusante do paiol de explosivos, ocupando uma área total aproximada de 3,9 hectares (VOGBR, 2006), conforme apresentado na Figura 4.15.

Saliba (2007) realizou a caracterização de solos deste local e estabeleceu suas características básicas, mostrando a existência de um primeiro material estéril de itabirito, coletada na superfície da PDE-05 que apresentou predominância na fração arenosa, sendo classificadas como areias silto-argilosas de granulometria muito uniforme.

Outro material de solo caracterizado por Saliba (2007) é um *residual de xisto com porções de alteração de rocha quartzo feldespato-xisto*, coletado na ombreira esquerda da PDE-05, foi classificada como areia silto-argilosa.

É importante ressaltar que para ambos os materiais, estéril e solo residual, os limites de consistência mostraram-se com uma consistencia não plástica, devido ao fato que o quartzo é o mineral predominante encontrado na fração areia e pequena existência da fração de finos (silte e argila inferior a 20%) (Saliba, 2007).

A tabela 4.10 apresenta a granulometria das amostras retiradas na área da PDE-05.

Tabela 4.10 - Análise granulométrica da Pilha estéril nº 5 da Mina do Andrade – Bela Vista de Minas (Saliba, 2007).

Fração	Pedregulho	Areia	Areia	Areia fina	Silte	Argila
	(%)	grossa (%)	média (%)	(%)	(%)	(%)
Estéril	20,6	2,9	13,7	48,4	22,6	2,8
Residual	3,9	12,4	36,6	25,5	11,4	8,6

Figura 4.15 - Vista aérea da região em estudo, identificando alguns aspectos importantes registrados durante a caracterização da área (Saliba, 2007).

Os resultados do E.I.M. realizados por Saliba (2007) são apresentados na figura 4.16.

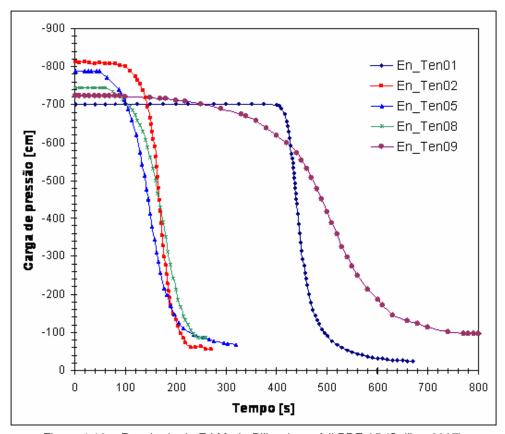


Figura 4.16 - Resultado do E.I.M. da Pilha de estéril PDE-05 (Saliba, 2007).

Os ensaios En_Ten01, En_Ten02, En_Ten05 e En_Ten06 foram realizados no material definido como estéril, e os ensaios En_Ten08 e En_Ten09 no material definido como alteração de rocha (Saliba, 2007).